Мильгамма при циррозе печени

Раствор для в/м введения прозрачный, красного цвета, с характерным запахом.

1 амп.
тиамина гидрохлорид100 мг
пиридоксина гидрохлорид100 мг
цианокобаламин1 мг
лидокаина гидрохлорид20 мг

Вспомогательные вещества: бензиловый спирт — 40 мг, натрия полифосфат — 20 мг, калия гексацианоферрат — 0.2 мг, натрия гидроксид — 12 мг, вода для инъекций — до 2 мл.

2 мл — ампулы из коричневого светозащитного гидролитического стекла типа I (5) — поддоны из ПВХ с разделителями (1) — пачки картонные.
2 мл — ампулы из коричневого светозащитного гидролитического стекла типа I (5) — поддоны из ПВХ с разделителями (2) — пачки картонные.
2 мл — ампулы из коричневого светозащитного гидролитического стекла типа I (5) — поддоны из ПВХ с разделителями (5) — пачки картонные.

Фармакодинамика

Нейротропные витамины группы В оказывают благоприятное воздействие на воспалительные и дегенеративные заболевания нервов и двигательного аппарата. Способствуют усилению кровотока и улучшают работу нервной системы.

Тиамин играет ключевую роль в метаболизме углеводов, а также в цикле Кребса с последующим участием в синтезе ТПФ (тиамин пирофосфат) и АТФ (аденозин трифосфат).

Пиридоксин участвует в метаболизме протеинов, и частично, в метаболизме углеводов и жиров. Физиологической функцией обоих витаминов является потенцирование действия друг друга, проявляющееся в положительном влиянии на нервную, нейромышечную и сердечно-сосудистую системы. При дефиците витамина В6 широко распространенные состояния дефицита быстро купируются после введения этих витаминов.

Цианокобаламин участвует в синтезе миелиновой оболочки, стимулирует гемопоэз, уменьшает болевые ощущения, связанные с поражением периферической нервной системы, стимулирует нуклеиновый обмен через активацию фолиевой кислоты.

Лидокаин — местноанестезирующее средство, вызывающее все виды местной анестезии: терминальную, инфильтрационную, проводниковую.

После в/м введения тиамин быстро абсорбируется из места инъекции и поступает в кровь (484 нг/мл через 15 мин в первый день введения в дозе 50 мг) и распределяется неравномерно в организме — при содержании его в лейкоцитах 15%, эритроцитах 75% и в плазме 10%. В связи с отсутствием значительных запасов витамина в организме, он должен поступать в организм ежедневно. Тиамин проникает через ГЭБ и плацентарный барьер и обнаруживается в материнском молоке. Тиамин выводится с мочой в α-фазе через 0.15 ч, в β-фазе — через 1 ч и в терминальной фазе — в течение 2 дней. Основными метаболитами являются: тиаминкарбоновая кислота, пирамин и некоторые неизвестные метаболиты. Из всех витаминов тиамин сохраняется в организме в наименьших количествах. Организм взрослого человека содержит около 30 мг тиамина в виде 80% тиамина пирофосфата, 10% тиамина трифосфата, остальное количество в виде тиамина монофосфата.

После в/м инъекции пиридоксин быстро абсорбируется в кровяное русло и распределяется в организме, выполняя роль коэнзима после фосфорилирования группы СН2ОН в 5-м положении. Около 80% витамина связывается с белками плазмы крови. Пиридоксин распределяется во всем организме, проникает через плацентарный барьер, обнаруживается в материнском молоке, депонируется в печени и окисляется до 4-пиридоксиновой кислоты, которая экскретируется с мочой, максимум через 2-5 ч после абсорбции. В человеческом организме содержится 40-150 мг витамина В6, его ежедневная скорость элиминации — около 1.7-3.6 мг при скорости восполнения 2.2-2.4%.

В качестве патогенетического и симптоматического средства в составе комплексной терапии заболеваний и синдромов нервной системы различного происхождения:

  • невралгия, неврит;
  • парез лицевого нерва;
  • ретробульбарный неврит;
  • ганглиониты (включая опоясывающий лишай);
  • плексопатия;
  • невропатия, полиневропатия (диабетическая, алкогольная и другие);
  • ночные мышечные судороги, особенно у лиц старших возрастных групп;
  • неврологические проявления остеохондроза позвоночника: радикулопатия, люмбоишалгия, мышечно-тонические синдромы.

Инъекции выполняют глубоко в/м.

В случаях выраженного болевого синдрома для быстрого достижения высокого уровня препарата в крови лечение целесообразно начинать с 2 мл ежедневно в течение 5-10 дней. В дальнейшем после стихания болевого синдрома и при легких формах заболевания переходят либо на терапию лекарственной формой для приема внутрь (например, препарат Мильгамма® композитум), либо на более редкие инъекции (2-3 раза в неделю в течение 2-3 недель) с возможным продолжением терапии лекарственной формой для приема внутрь (например, препаратом Мильгамма® композитум).

Рекомендуется еженедельный контроль терапии со стороны врача.

Переход на терапию лекарственной формой для приема внутрь (например, препаратом Мильгамма® композитум) рекомендуется осуществлять в наиболее возможный короткий срок.

Частота проявления неблагоприятных побочных реакций приведена в соответствии с классификацией ВОЗ: очень часто (более чем у 1 из 10 проходящих лечение), часто (менее чем у 1 из 10, но более чем у 1 из 100 проходящих лечение), нечасто (менее чем у 1 из 100, но более чем у 1 из 1000 проходящих лечение), редко (менее чем у 1 из 1000, но более чем у 1 из 10 000 проходящих лечение), очень редко (менее чем у 1 из 10 000, включая отдельные случаи), в отдельных случаях — симптомы проявляются с неизвестной частотой.

Со стороны иммунной системы: редко — аллергические реакции (кожная сыпь, затрудненное дыхание, анафилактический шок, отек Квинке).

Со стороны нервной системы: в отдельных случаях — головокружение, спутанность сознания.

Со стороны сердечно-сосудистой системы: очень редко — тахикардия; в отдельных случаях — брадикардия, аритмия.

Со стороны ЖКТ: в отдельных случаях — рвота.

Со стороны кожи и подкожных тканей: очень редко — повышенное потоотделение, акне, зуд, крапивница.

Со стороны костно-мышечной системы: в отдельных случаях — судороги.

Общие расстройства и нарушения в месте введения: в отдельных случаях — может возникнуть раздражение в месте введения препарата; системные реакции возможны при быстром введении или при передозировке.

Если любые из указанных выше побочных эффектов усугубляются или отмечаются любые другие побочные эффекты, пациенту необходимо сообщить об этом врачу.

  • беременность;
  • период грудного вскармливания;
  • детский возраст;
  • декомпенсированная сердечная недостаточность;
  • повышенная индивидуальная чувствительность к компонентам препарата.

Применение препарата противопоказано в период беременности и грудного вскармливания.

Читайте также:  Как принимать верошпирон при циррозе печени

Противопоказано применение препарата в детском возрасте.

При случайном в/в введении пациент должен наблюдаться врачом или должен быть госпитализирован в зависимости от тяжести симптомов.

Влияние на способность к управлению транспортными средствами и механизмами

Информация о предостережении относительно применения препарата водителями транспортных средств и лицами, работающими с потенциально опасными механизмами, отсутствует.

Лечение передозировки заключается в отмене препарата и проведении симптоматической терапии.

Тиамин полностью распадается в растворах, содержащих сульфиты, как следствие, продукты распада тиамина инактивируют действия других витаминов.

Тиамин несовместим с окисляющими и восстанавливающими соединениями, в т.ч. йодидами, карбонатами, ацетатами, таниновой кислотой, аммония железа цитратом, фенобарбиталом, рибофлавином, бензилпенициллином, декстрозой, дисульфитами и другими.

Медь ускоряет разрушение тиамина; кроме того, тиамин утрачивает свою эффективность при увеличении значений pH (более 3).

Терапевтические дозы пиридоксина ослабляют эффект леводопы (редуцируется антипаркинсоническое действие леводопы) при одновременном приеме. Также наблюдается взаимодействие с циклосерином, пеницилламином, изониазидом.

При парентеральном применении лидокаина в случае дополнительного использования норэпинефрина и эпинефрина возможно усиление побочного действия на сердце. Также наблюдается взаимодействие с сульфонамидами.

Цианокобаламин несовместим с солями тяжелых металлов. Рибофлавин также оказывает деструктивное действие, особенно при одновременном воздействии света; никотинамид ускоряет фотолиз, в то время как антиоксиданты оказывают ингибирующее действие.

Препарат следует хранить в защищенном от света, недоступном для детей месте при температуре от 2° до 8°С; не замораживать. Срок годности — 3 года. Не использовать после истечения срока годности.

Отпускают по рецепту.

Источник

Комментарии

1. Патогенетическое действие препарата Мильгамма® композитум

1.1. Биохимическая роль бенфотиамина для нервной системы

Биологически активным веществом бенфотиамина является тиаминдифосфат (ТДФ), который ранее назывался также тиаминпирофосфатом. ТДФ — это кофермент различных многоферментных комплексов, среди которых наибольшее значение для нервных клеток имеют ферменты, участвующие в углеводном обмене. Тиамин-зависимые ключевые ферменты играют важную роль в окислительных процессах расщепления глюкозы.

Кроме того, в пентозофосфатном цикле участвует транскетолаза. Данный путь обмена веществ, который происходит в цитозоле клетки, предназначен в первую очередь для того, чтобы предоставлять пентозофосфаты (например рибозо-5-фосфат) для синтеза нуклеиновых кислот и никотинамидадениндифосфат (восстановленная форма — НАДФН), например для синтеза жирных кислот. Обратной реакцией с помощью транскетолазы 5-атомный сахар превращается в гексозу или глицеральдегид-3-фосфат. ТДФ в этой реакции выполняет роль простетической группы транскетолазы, которая переносит С2-фрагмент. После прохождения через мембраны митохондрий пируват декарбоксилируется с образованием ацетил-КоА. Катализатором реакции служит пируват-дегидрогеназный комплекс (ПДК), а ТДФ выполняет роль кофермента. В начальном энергетическом процессе, так называемом цитратном цикле, также участвует ТДФ-зависимый фермент. При участии а-кетоглутарат-дегидрогеназы (или 2-оксоглутарат-дегидрогеназы) а-кетоглутарат декарбоксилируется, дегидрируется и превращается в сукцинил-КоА, который затем, проходя стадии фумарата и малата, снова преобразуется в оксалоацетат.

В результате проведения ряда исследований по распределению тиамина в нервной клетке был получен следующий основной факт. В цитоплазме находится только транскетолаза, в то время как пируват-дегидрогеназа и а-кетоглутарат-дегидрогеназа локализованы в митохондриях (Cooper, 1 979). На основе представлений о значении тиамина в метаболизме глюкозы сделан вывод о том, что между распределением тиамина и расщеплением глюкозы существует прямая взаимосвязь.

Такие исследования были проведены у 25 пациентов с циррозом печени (Hassan, 1991). У этих пациентов отмечалась гипергликемия и были выявлены отличающиеся от нормальных показателей параметры во время проведения орального теста толерантности к глюкозе (ОТТГ). После приема тиамина уровень глюкозы, определяемый натощак, непрерывно снижался вплоть до завершения исследования к 30-му дню (от 11 7,6±2,9 до 87,6±2,4) (p≤0,01). В ОТТГ, который выполнялся 30 дней, все показатели значительно улучшились (p≤0,01). На этом основании для улучшения утилизации глюкозы пациентам с циррозом печени рекомендуется дополнительный прием тиамина или бенфотиамина. Витамин В6 в своей фосфорилированной форме (пиридоксаль-5′-фосфат, ПФ) является коферментом большого числа ферментов, которые участвуют в общем неокислительном обмене аминокислот. Реакцией образования Шиффова основания ПФ своей альдегидной группой присоединяются к аминогруппе аминокислот апофермента. Ферментативные реакции включают декарбоксилирование, при котором синтезируются биогенные амины (гистамин, тирамин, триптамин) или нейромедиаторы (серотонин, допамин, γ-аминомасляная кислота [ГАМК]), трансаминирование, которое происходит при анаболических и катаболических процессах обмена веществ (например, в них участвуют глутамат-оксалацетат-трансаминаза, глутамат-пируват-трансаминаза, а-кетоглутарат-трансаминаза), а также различные процессы расщепления и синтеза аминокислот. Так, например, превращение гомоцистеина в цистеин катализируется двумя ПФ-зависимыми коферментами. Кроме того, ПФ выполняет роль кофермента для гликогенфосфорилазы.

1.2. «Нетрадионная функция» бенфотиамина

Независимо от функций коферментов, тиаминтрифосфат (ТТФ) и ТДФ в клеточных мембранах проявляют также самостоятельные «нетрадиционные функции».

Этот тезис базируется на первых экспериментах, выполненных von Muralt (1 947), который после стимуляции нервов наблюдал повышенное высвобождение тиамина.

Такое высвобождение, по-видимому, является результатом гидролиза ТТФ и ТДФ. Исходя из этого, тиамину отводится функция высвобождения ацетилхолина в холинергических нервных окончаниях (Eder, 1976). У крыс с тиаминовой недостаточностью синтез ацетилхолина снижен примерно до 35% нормы и может быть нормализован путем приема тиамина (Barclay, 1980). ТТФ связан с белком натриевых каналов (Bassler, 1 992). Относительно роли ТТФ и ТДФ при возбуждении нервов постулируются две гипотезы: одна исходит из каталитической функции, обеспечивающей проницаемость мембраны для Na+, в то время как другая подчеркивает фиксацию отрицательных зарядов на внутренней поверхности мембраны (Iwata, 1982).

Тиамин связывается также с изолированными никотинергическими рецепторами. Нервная проводимость может зависеть от влияния антиметаболитов тиамина (Waldenlind, 1978). Существенное значение может иметь при этом контроль состояния натриевых каналов в аксональных мембранах, реализуемый посредством ТТФ (Schoffeniels, 1 983).

1.3. Какую роль играет бенфотиамин при сахарном диабете?

Вследствие центральной роли тиамина в метаболизме глюкозы ставится вопрос об обеспеченности тиамином или потребности в нем при патологических нарушениях обмена веществ, которые развиваются при сахарном диабете. В экспериментальном исследовании у крыс с сахарным диабетом в периферической крови и различных органах определялся уровень тиамина с тиаминовой компенсацией и без нее (Hobara, 1 983). В печени животных контрольной группы содержание тиамина оказалось наибольшим по сравнению с остальными исследованными органами. У животных с сахарным диабетом, не получавших тиаминовую компенсацию, содержание тиамина в печени было статистически достоверно сниженным (p≤0,001), в то время как в других органах оно оставалось стабильным или слегка возрастало. Согласно данным другой работы, у крыс уже после двухнедельного течения сахарного диабета наблюдалось значительное снижение концентрации тиамина в печени и сердце по сравнению с животными контрольной группы (Reddi, 1 992). Приведенные результаты указывают на то, что у животных с сахарным диабетом относительный дефицит тиамина может вызывать повышение потребности в нем.

Читайте также:  Фото цирроза печени человека

На существование непосредственной связи между тиамином и усвоением глюкозы у больных сахарным диабетом указывают результаты следующего исследования. Известно, что при применении определеных салуретиков может индуцироваться гипергликемия, которая является обратимой и проходит после прекращения приема лекарства. У 20 больных сахарным диабетом было проведено исследование, имевшее целью установить, существует ли взаимосвязь сахарного диабета и тиамина, так как при дефиците тиамина могут происходить похожие изменения в обмене веществ (Standl, 1 968). Критерием количества применения глюкозы служил коэффициент усвоения глюкозы у пациентов, которым назначался гидрохлоротиазид (ГХТ) в сочетании с тиамином или без него. После приема ГХТ данный коэффициент значительно ухудшался по сравнению с контрольной группой (p≤0,05), в то время как дополнительный прием тиамина улучшал усвоение глюкозы (p≤0,05). Если учесть ту важнейшую роль, которую играет ТДФ в метаболизме глюкозы, то такой результат легко объясним. Вследствие повышенного уровня глюкозы в крови у больных сахарным диабетом развивается повышенная потребность в тиамине.

Результаты исследования, выполненного Berndt (1977), подтверждают эту повышенную потребность. Радиактивно меченый препарат тиамина назначался перорально, и по содержанию тиамина в моче судили о степени обеспеченности организма тиамином. Как у хронических алкоголиков, так и у обследованных больных сахарным диабетом с полиневропатией и без нее, отмечался значительно более низкий уровень выделения тиамина в сравнении со здоровыми людьми, составлявшими контрольную группу. Это является достоверным показателем наличия дефицита тиамина или повышенной потребности в нем. С помощью эритроцитарной транскетолазы (ЭТК) у 1 00 больных сахарным диабетом 1 типа определялась обеспеченность организма тиамином (Havivi, 1 990). Дефицит тиамина был выявлен у 1 8% больных сахарным диабетом, в то время как у здоровых людей аналогичная ситуация наблюдалась лишь в 1% случаев (p≤0,001).

В рамках клинического исследования 35 больных сахарным диабетом 1 и 2 типов с симптоматичной дистально симметричной полиневропатией в течение 90 суток получали бенфотиамин-содержащий комбинированный препарат (Wolf, 1995).

На 0-е, 7-е, 45-е и 90-е сутки с помощью определения а-ЭТК (коэффициент активации эритроцитарной транскетолазы) у пациентов оценивался тиаминовый статус. Значения а-ЭТК более 1,22 (Rieder, 1980) рассматриваются как пограничный уровень недостаточного обеспечения тиамином. При первом измерении не было выявлено никаких признаков тиаминового дефицита. У пациентов, получавших бенфотиамин, уже через неделю был выявлен 8-кратный и 25-кратный уровень содержания тиамина в гемолизате или плазме, (p≤0,05) — показатели, вследствие более низких значений а-ЭТК (табл. 7). Была достигнута оптимизация обеспечения тиамином в течение всего срока исследования, в то время как при назначении плацебо уже на 7-й день наблюдалось ухудшение тиаминового статуса (p≤0,05). Согласно полученным результатам, несмотря на начальные «нормальные» показатели крови, назначение бенфотиамина больным сахарным диабетом позволяет достигать у них значительного улучшения обеспеченности тиамином. Фармакодинамический эффект или клиническая эффективность бенфотиамина подтверждались в этом исследовании улучшением скорости проведения по нерву (см. главу 6).

Таблица 7. Значения а-ЭТК (среднее значение и стандартное отклонение) после приема активного препарата (n=18) и плацебо (n=17) (Wolf, 1995)

Группа больных, принимавшиха-ЭТК
1 -е сутки7-е сутки45-е сутки90-е сутки
утроутровечерутроутро
Активный препарат1,11 ±0,051,02*o±0,011,02*o±0,011,03*o±0,011,03*o±0,02
Плацебо1,11 ±0,051, 1 6±0,061,14±0,071, 13±0,071,10±0,04


* достоверные различия за сутки (p≤0,05)
o достоверные различия между группами с активным препаратом и плацебо (p≤0,05)

1.4. Антиноцицептивное действие

Наряду с описанными выше эффектами тиамину и пиридоксину может быть свойственно также антиноцицептивное действие. Такие исследования в большинстве случаев проводились в сочетании с цианокобаламином. Возможными точками приложения действия являлись непосредственно болевые рецепторы, чувствительность которых варьирует в результате влияния различных тканевых гормонов (например брадикинина) и нейропептидов. Сенсибилизация болевых рецепторов проявляется, например, как воспалительная гипералгезия (повышенная болевая чувствительность). И здесь возможна взаимосвязь, так как недостаток в тиамине и пиридоксине сопровождается симптомами воспаления кожи и слизистых оболочек. Наряду с этим в стволе головного мозга имеются несколько областей, которые через нисходящие пути в спинном мозге осуществляют тормозящее влияние на вторичный нейрон и таким образом вызывают притупление болевой чувствительности. По всей видимости, медиатором в данном случае выступает серотонин. В то время как пиридоксальфосфат участвует в синтезе серотонина в качестве кофермента, тиамин выполняет важную функцию при его депонировании и транспорте. Именно здесь, возможно, находится точка реализации анальгетического действия фармакологических доз тиамина и пиридоксина (Reeh, 1988). Антиноцицептивное действие довольно просто подтверждается в экспериментах на животных. При использовании модели, предусматривающей проведение импульсов в таламус крыс после стимуляции Nervus suralis (икроножный нерв), проявлялось отчетливое тормозящее действие вышеописанной комбинации (тиамин или пиридоксин + кобаламин). Факт того, что эффект развивался только через 1 час после внутрибрюшинного введения, позволяет сделать вывод о том, что данный эффект оказывает влияние на синтез ингибиторного медиатора (Jurna, 1988). Тест «теплого глотка» у крыс позволяет провести термически индуцированную ноцицептивную реакцию. Петлевый тест приводит в действие абдоминальную реакцию путем внутрибрюшинного введения насыщенного раствора фенилбензохинона, при этом изучается химически индуцированная ноцицептивная реакция. При использовании обеих моделей описанная выше комбинация проявляла антиноцицептивный эффект, причем каждый из компонентов самостоятельно также оказывал действие. Применение комбинации усиливало анальгезирующий эффект диклофенака или метамизола (Wild, 1988).

Читайте также:  Новое при лечении цирроза

Весьма существенно, что эти результаты подтверждались неоднократно, в том числе и при проведении двойного слепого клинического исследования. В качестве модели в большинстве случаев выступал болевой синдром позвоночного столба, при котором комбинация витаминов В1 и В6 демонстрировала временами значительные преимущества как сама по себе (Schwieger, 1 988), так и в сочетании с диклофенаком (Koch, 1 991).

1.5. Регенерирующее влияние на поврежденные нервные волокна

Следует также подчеркнуть влияние высоких доз нейротропных витаминов группы B на регенерацию поврежденных нервов. При экспериментальном аллергическом неврите в первую очередь нарушается миелиновый обмен. В этом случае происходит активация фосфолипазы-A, следствием чего является чрезмерный гидролиз эфиров жирных кислот, а также оказание влияния на жидкую субстанцию миелиновых оболочек. Одновременно происходит активация ацилтрансферазы.

Одновременное применение тиамина, пиридоксина и кобаламина при использовании данной модели сопровождается более поздним и ослабленным проявлением неврологической симптоматики, причем результаты указывают на то, что при этом стимулируется «восстановительный механизм» (Woelk, 1 982). У кроликов с помощью теста криопоражения можно вызывать изолированное аксональное повреждение нервных волокон. Данная модель позволила установить, что через 21 день после поражения в дистальном регенерирующем отделе икроножного нерва число регенерированных волокон было значительно увеличено после введения вышеупомянутой комбинации витаминов (Becker, 1990). На модели экспериментального неврита у кроликов было выявлено, что парентеральное введение высоких доз тиамина, пиридоксина гидрохлорида и цианокобаламина существенно увеличивает возможность встраивания холина в поврежденные нервы. Согласно методике, радиактивно меченый холин впрыскивался внутримедуллярно. Действие комбинации витаминов могло быть основано на стимуляции аксоплазматической части транспорта структурных элементов мембраны или миелиновой оболочки, например холина.

Встраивание холина было существенно повышено по сравнению с контрольной группой, что может интерпретироваться как проявление ускоряющего действия исследуемой комбинации на регенерацию периферических нервов. Существенным моментом являлось то, что животные не имели дефицита исследуемых компонентов. Авторы пришли к заключению, что способствующие регенерации свойства тиамина, пиридоксина и цианокобаламина основаны на фармакологических эффектах, характерных для высоких доз этих витаминов, и не зависящих от их дефицита. Возможно, тиамин посредством усиления энергообеспечения в форме АТФ поддерживает аксоплазматический транспорт, в то время как пиридоксин участвует в синтезе транспортных белков, а цианокобаламин обеспечивает доставку жирных кислот для клеточных мембран и миелиновой оболочки (Reiners, 1996).

Предотвращение образования конечных продуктов ускоренного гликозилирования белков (AGE-продуктов)

Результаты самых новых исследований подтверждают, что тиамин или его фосфаты, а также витамин В6 могут предотвращать образование конечных продуктов ускоренного гликозилирования белков (AGE-продуктов). Образование AGE-продуктов представляет собой важный патогенетически активный механизм токсичности глюкозы при сахарном диабете и диабетической полиневропатии (Brownlee, 1999 и 2001).

После инкубации клеточных культур с высокими концентрациями глюкозы (28 ммоль/л) наблюдались уменьшенная клеточная пролиферация и увеличенное образование лактата по сравнению с физиологическими концентрациями глюкозы (5,6 ммоль/л). В этих исследованиях использовались клетки сетчатки быков (BREC — bovine retinacels) и клетки эндотелия пупочной вены человека (HUVEC — human umbilikal vein endothelial). Патологические изменения при глюкозной нагрузке предотвращались в клеточных культурах путем дополнительного введения тиамина (150 ммоль/л). AGE-продукты дополнительно определялись в HUVEC. В то время как при концентрации глюкозы 28 ммоль/л образовывалось повышенное количество AGE-продуктов (p≤0,05), в клеточных культурах с добавлением тиамина происходило лишь минимальное повышение их содержания. Не отмечалось существенных различий содержания AGE-продуктов в клеточных культурах при концентрации глюкозы 5,6 ммоль/л с тиамином и без него (рис. 8). Авторы объясняют ингибирование образования AGE-продуктов как результат стимуляции тиамином — посредником окислительного расщепления глюкозы в пентозо-фосфатном и цитратном циклах (La Selva, 1 996).

Рис. 8. Образование AGE-продуктов в клетках эндотелия HUVEC при инкубации с 5,6 ммоль/л или 28 ммоль/л глюкозы (Глю) с добавлением тиамина (Тиа) 150 ммоль/л и без него (La Selva, 1996)

В одном из современных исследований изучалось влияние бенфотиамина или тиамина на клеточные культуры HUVEC при глюкозной нагрузке (28 ммоль/л). В то время как при глюкозной нагрузке наблюдалось угнетение клеточной пролиферации, при добавлении бенфотиамина или тиамина она почти нормализовалась.

В экспериментальной работе изучалось влияние тиамина и его фосфатов, а также аминогуанидина и витамина В6 на образование AGE-продуктов при использовании в качестве субстратов альбумина бычьей сыворотки, рибонуклеазы A и метгемоглобина человека. При этом оказалось, что ТДФ и пиридоксамин, в отличие от аминогуанидина, являются более действенными ингибиторами образования AGE-продуктов (Booth, 1 996).

Отправные точки вышеназванных биоактивных веществ в сложном процессе гликозилирования более подробно изучались в последующем исследовании с использованием альбумина бычьей сыворотки и рибонуклеазы A (Booth, 1 997). Было выявлено, что на этапе «позднего гликозилирования» ТДФ и пиридоксамин способны эффективно ингибировать образование AGE-продуктов. В отличие от них, аминогуанидин не оказывал практически никакого влияния на «позднее гликозилирование».

Активация транскетолазы бенфотиамином

Бенфотиамин препятствует активации патогенетических механизмов изменения направления промежуточных продуктов распада глюкозы — фруктозо-6-фосфата и глицеральдегид-3-фосфата — в пентозо-фосфатный цикл веществ. Это происходит в результате активации транскетолазы — витамин В1-зависимого фермента, активность которого у больных сахарным диабетом снижается. Бенфотиамин повышает активность транскетолазы до 400% и таким образом устраняет «задержку утилизации» (Brownlee, 2001 ). Метаболизм глюкозы может снова нормализоваться.

Фармакодинамика бенфотиамина основывается на множестве принципов. Новейшие данные подтверждают возможность ингибирования образования AGE-продуктов. Бенфотиамин и витамин В6 препятствуют образованию AGE-продуктов и обеспечивают при диабетической полиневропатии возможность целенаправленного терапевтического вмешательства с помощью препарата Мильгамма® композитум.

[Содержание]

Комментарии

(видны только специалистам, верифицированным редакцией МЕДИ РУ)

Источник