Вирус гепатита это абиотический фактор или биотический фактор
Организм и среда
Несмотря на то, что экология стала междисциплинарной наукой, ее важнейшей задачей остается выяснение общих закономерностей, присущих организму и среде, в которой он обитает.
Пространство, в котором живут организмы, и все то, что их окружает в этом пространстве, есть их окружающая среда. В этой среде присутствуют факторы, которые определяют ее содержание, делают ее специфичной для организмов каждого вида, т. е. каждый вид имеет свою среду. Для человека пространство, в котором он живет, является средой обитания. Территория, на которой располагается город, деревня или другой какой-либо населенный пункт, в котором живет человек, есть его среда обитания.
Различают абиотические, биотические и антропогенные (в составе биотических) факторы среды. Под абиотическими (греч. а — не, bios — жизнь) факторами понимают факторы неживой природы. Характер этих факторов определяется их физической и химической природой. Биотическими (греч. bios — жизнь) факторами являются живые организмы растительной и животной природы, обитающие в среде. Эти организмы составляют совокупность биотических факторов. Для абиотических и биотических факторов (растения, животные) характерны многообразие и безграничные связи, а также их взаимодействие в процессе жизни. Антропогенные (греч. anthropos — человек, genos — рождение) факторы — это факторы, возникающие в результате деятельности человека в среде.
Абиотическое содержание среды определяется климатическими, почвенными и водными условиями. Поэтому в соответствии с одной из популярных классификаций абиотические факторы среды классифицируют на физические (температура, свет, влажность, барометрическое давление), химические (состав атмосферы, органические и минеральные вещества почвы, рН почвы и др.) и механические факторы (рельеф местности, движения почвы и воды, ветер, оползни и др.). Значение этих факторов состоит в том, что они существеннейшим образом определяют распространение видов, т. е. они определяют ареал видов, под которым понимают географическую зону, являющуюся местом обитания (распространения) организмов того или иного вида.
Для живых организмов характерен диапазон переносимости действия абиотических факторов, причем это определяется их нормой реакции. Одни организмы способны переносить колебания факторов среды в очень широких пределах. Они получили название эв-рибиотных организмов (от греч. eurys — широкий). Другие выдерживают влияние абиотических факторов в очень узких пределах. Их называют стенобионтными организмами (от греч. stenos _ узкий). Эврибионтные и стенобионтные организмы встречаются как среди растений, так, и среди животных.
Физические факторы составляют значительную часть абиотических факторов. Особое значение принадлежит температуре, поскольку она является важнейшим фактором, ограничивающим жизнь. Различают термические пояса — тропический, субтропический, умеренный и холодный, к которым приурочена жизнь организмов в тех или иных температурных условиях. Верхний и нижний уровни температурного диапазона легальны для организмов. Температуру, которая благоприятна для жизни организмов, называют оптимальной. Большинство организмов способно к жизни в диапазоне от 0° до 50°С.
На основе способности организмов существовать в условиях разных. температур их классифицируют на эвритермные организмы, которые способны существовать в условиях значительных колебаний температур, и сте-нотермные организмы, которые могут существовать лишь в узком диапазоне температур (рис. 202). Эвритермны-ми являются организмы, обитающие в основном в условиях континентального климата. Примером их являются животные многих видов, обитающие в пресных водоемах и способные выдерживать как промерзание воды, так и ее нагревание до 40-45 С. Эвритермные организмы выдерживают самые жесткие температурные условия. Например, личинки многих двукрылых могут жить в воде при температуре 50°С. В горячих источниках (гейзерах) при 85 °С и более обитают многие виды бактерий, водорослей, гельминтов. С другой стороны, арктические виды бактерий и водорослей обитают в очень холодной морской воде. Для многих эвритермных организмов характерна способность впадать в состояние оцепенения, если действие температурного фактора «ужесточается». В этом состоянии резко снижается уровень обмена веществ. Примерами оцепенения являются оцепенение насекомых или рыб при значительном падении температуры. У млекопитающих (медведи, барсуки и др.) оцепенение проявляется в виде зимней спячки, когда резко снижается обмен веществ, но температура тела при этом падает незначительно.
От оцепенения следует отличать анабиоз (от греч. ana — вновь, bios — жизнь, anabiosis — оживление), который представляет собой явление, заключающееся в том, что у организмов под влиянием разных причин может резко снижаться уровень обмена веществ вплоть до отсутствия видимых признаков жизни. Например, у растений высушенные семена сохраняют всхожесть в течение многих лет. Инцистирование инфузорий позволяет сохраняться им живыми до 6 лет, а яйца Diaptomus sanguires сохраняются свыше 300 лет.
Стенотермные организмы встречаются как среди животных, так и растений. Например, многие морские животные способны выдерживать повышение температуры лишь до 30°С. Некоторые кораллы выживают при температуре воды не более 21°С.
Многие виды животных способны или неспособны к собственной терморегуляции, т. е. поддерживать постоянную температуру. По этому признаку их делят на пойкилотермных (от греч. poikiloi —-различный, переменный и therme — жар) и гомойотермных (от греч. homoios — равный и therme — жар). Первым присуща непостоянная температура, тогда как вторым — постоянная. Гомойотермны-ми являются млекопитающие и некоторые виды птиц. Они способны к терморегуляции, которая обеспечивается физическими и химическими путями. Физическая терморегуляция осуществляется за счет накапливания подкожного жирового слоя, ведущего к сохранению тепла, или за счет учащенного дыхания. Химический путь терморегуляции заключается в потоотделении. Пойкилотермными являются все организмы, кроме млекопитающих и нескольких видов птиц. Температура их тела приближается к температуре среды. Лишь некоторые виды этих животных способны к изменению температуры своего тела, притом в определенных условиях. Например, этой способностью обладают тунцы. Важным для пойкилотермных организмов является то, что повышение температуры их тела происходит, когда увеличивается их активность, их обмен веществ.
В ходе эволюция гомойотермные животные развили способность защищаться от холода (миграции, спячка, мех и т. д.).
Свет является важнейшим абиотическим фактором, особенно для фотосинтез ирующих растений (фототрофов). Уровень фотосинтеза зависит от интенсивности солнечной радиации, качественного состава света, распределения света во времени. Однако для других организмов его значение по сравнению с температурой является меньшим, поскольку известны многие виды бактерий и грибов, которые могут длительно размножаться в условиях полной темноты. Различают светолюбивые, теплолюбивые и тепловыносливые растения. Для многих животных зоопланктона свет является сигналом к вертикальной миграции, в результате чего днем они остаются на глубинах, тогда как ночью поднимаются в теплые, богатые кормом верхние слои воды. Для животных, обладающих зрением, наиболее успешно добывание пищи в светлое время.
У животных многих видов длительность светового дня оказывает влияние на их половую функцию, стимулируя ее в период увеличения светового дня (фотопериода) и угнетая ее при уменьшении светового дня (осенью или зимой). У птиц фотопериод влияет на яйцеклетки (рис. 203). Укорочение светового дня служит сигналом к миграции.
Результатом изменения светового режима (длительности светового дня) является фотопериодизм (от греч. photos — свет, periodos — круговращение), под которым понимают годовые циклы развития у многих видов растений и животных. Например пшеница, овес, ячмень и другие культуры зацветают при длинном световом дне на севере, тогда как кукуруза, хлопчатник — при коротком световом дне на юге.
Влажность — это комплексный фактор и представлен количеством водяных паров в атмосфере и воды в почве. Влажность измеряют путем определения относительной влажности воздуха в виде процентного отношения давления водяного пара к давлению насыщенного пара при одинаковой температуре. Важность влажности для жизни организмов определяется тем, что потеря ее клетками ведет к их гибели
.
Обычно растения поглощают воду из почвы. Что касается животных, то потребность в воде они реализуют путем ее питья, либо всасыванием через покровы тела, либо с пищей, либо путем окисления жиров.
В зависимости от влажности происходит распределение видов. Например, земноводные, дождевые черви и некоторые моллюски способны жить только в очень влажных местах. Напротив, многие животные предпочитают сухость.
Влажность почвы зависит от количества осадков, глубины залегания почвенных вод и других условий. Она важна для растворения в воде минеральных веществ.
Большое значение в качестве абиотического фактора имеет комбинированное воздействие на организмы температуры и влажности (рис. 204).
Химические факторы, по своему значению не уступают физическим факторам. Например, большую роль играет газовый состав атмосферы и водной среды. Большинство организмов нуждается в кислороде, а некоторые организмы — в азоте, метане или сероводороде.
Газовый состав чрезвычайно важен для организмов, обитающих в водной среде. Например, в воде Черного моря очень много сероводорода, что делает этот бассейн не очень благоприятным для жизни в нем многих организмов. Что касается наземных организмов, то они малочувствительны к газовому составу атмосферы, поскольку он постоянен.
Соленость очень важна также в водной среде. Например, из числа водных животных наибольшее число видов обитает в соленых водах (морских и океанических), меньшее — в пресной воде и еще меньшее — в солоноватой воде. Способность поддерживать солевой состав внутренней среды влияет на распространение водных животных.
Существенную роль для жизни организмов, особенно растений, играет значение рН. Одни растения способны жить в кислой среде, другие — в щелочной, причем изменения в концентрации водородных ионов очень губительны для них. В среде, рН которой составляет 0, жизни почти нет. При таком рН растут лишь отдельные виды микроскопических грибов и водорослей.
Механические факторы характеризуются тем, что их действие сопровождается образованием свободных от жизни участков, которые затем заселяются, но содержание новых «поселенцев» будет отличаться от исходного вплоть до формирования новых сообществ живых существ.
Образование свободных от жизни участков происходит в результате стихийных бедствий (пожаров, наводнений и др.), различных геологических процессов, действий человека в природе и т. д. Примером механических факторов является обмеление Аральского моря. Вслед за этим на освобожденных от воды территориях появились новые виды животных и растений.
Характерная особенность видов в контексте их отношений к абиотическим факторам заключается в том, что каждый вид обладает определенным диапазоном толерантности (устойчивости) к тому или иному фактору, причем толерантность определяется нормой реакции, т. е. детерминируется генетически. В том случае, если действие абиотического фактора происходит за пределами диапазона толерантности, организм погибает. Оптимальными условиями для жизни вида является средняя часть диапазона его толерантности к тому или иному фактору. В этой части диапазона происходит также размножение организмов вида. Крайние границы диапазона толерантности неблагоприятны для жизни вида.
С другой стороны, характерной особенностью любого абиотического фактора является то, что он может ограничивать не только жизнь, но в той или иной степени и численность вида, действуя при этом в качестве регулирующего фактора. Регулирующее влияние абиотических факторов особенно возрастает на фоне взаимодействия организмов между собой (губительное воздействие на популяции анабиоза, хищничества, паразитизма), которое само по себе является регулирующим.
Следующей характерной особенностью абиотических факторов является их ограничивающая способность, которая заключается в том, что при оптимальном действии всех возможных абиотических факторов на организмы недостаток одного из факторов все же окажет ограничительное воздействие на популяцию. Например, внесение удобрений в почву при отсутствии какого-либо микроэлемента не приводит к ожидаемому улучшению (значительному повышению урожая культуры). Следовательно, данный микроэлемент является ограничивающим (лимитирующим) фактором. Понимание природы ограничивающих факторов имеет важное практическое значение для сельского хозяйства.
Абиотические факторы находятся в постоянном взаимодействии между собой, причем чувствительность организмов к зависимости одного фактора от другого также определяется нормой реакции, т. е. контролируется генетически. Например, губительный результат повышения температуры в наибольшей мере проявляется в случае повышения влажности среды. Другими словами, при «ужесточении» действия на организмы одного абиогенного фактора сужается диапазон устойчивости их к другому абиотическому фактору.
В ходе исторического развития организмы в ответ на смену дня и ночи, на смену времен года, т. е. в ответ на основные ритмы Земли, обусловленные ее вращением вокруг Солнца, выработали в процессе адаптогенеза способность к ритмической жизнедеятельности, что получило название биоритмоа. Характерная особенность биоритмов заключается в том, что они осуществляются синхронно с процессами, протекающими в среде периодически. Различают суточные ритмы (24-часовые) и околосуточные, которые протекают во время от 20 до 28 часов и которые называют циркадными (от лат. cirka — вокруг, около, dies — день).
В случае человека суточные и циркадные ритмы затрагивают многие свойства и физиологические процессы (температура тела, артериальное давление, митотическая активность клеток, биоэлектрическая активность мозга, количество тромбоцитов в периферической крови и т. д.). Предполагают, что эти ритмы генетически контролируются, т. к. у нейроспоры и дрозофилы установлены так называемые «часовые» гены, которые детерминируют циркадные ритмы этих организмов. Установлено также, что циркадный ритм присущ синтезу мРНК на «часовых» генах и что существуют «часовые» белки, способные ингибировать экспрессию «часовых» генов.
Наука, изучающая биоритмы, носит название хронобиология (от греч. chronos — время, logos — наука). Знание закономерностей биоритмов имеет большое значение в сельском хозяйстве и в профилактической медицине.
Source: studopedia.su
Источник
С экологических позиций среда — это природные тела и явления, с которыми организм находится в прямых ли косвенных отношениях. Окружающая организм среда характеризуется огромным разнообразием, слагаясь из множества динамичных во времени и пространстве элементов, явлений, условий, которые рассматриваются в качестве факторов.
Экологический фактор — это любое условие среды, способное оказывать прямое или косвенное влияние на живые организмы. В свою очередь организм реагирует на экологический фактор приспособительными реакциями.
Экологические факторы среды, с которыми связан любой организм, делятся на 2 категории:
1) Факторы неживой природы (абиотические)
2) Факторы живой природы (биотические)
Абиотические:
• климатические (свет, влага, давление, температура, движение воздуха)
• почвенные ( состав, влагоемкость, плотность, воздухопроницаемость)
• орографические (рельеф, высота над уровнем моря, экспозиция склона)
• химические (составы газового воздуха , солевой состав воды, кислотность)
Биотические:
• фитогенные (растения)
• зоогенные (животные)
• микробиогенные (вирусы, бактерии)
• антропогенные (деятельность человека).
Абиотические факторы наземной среды.
1) Лучистая энергия солнца.
Солнечная энергия — основной источник энергии на Земле, основа существования живых организмов (процесс фотосинтеза).
Количество энергии у поверхности Земли -21*10 кДж (солнечная постоянная) — на экваторе. Уменьшается к полюсам примерно в 2,5 раза. Также количество солнечной энергии зависит от периода года, продолжительности дня, прозрачности атмосферного воздуха (чем больше пыли, тем меньше солнечной энергии). На основе радиационного режима выделяют климатические пояса (тундра, леса, пустыни и т. д.) (солнечная радиация).
2) Освещение.
Определяется годовой суммарной солнечной радиацией, географическими факторами (состояние атмосферы, характер рельефа и т. д.). Свет необходим для процесса фотосинтеза, определяет сроки цветения и плодоношения растений. Растения подразделяются на:
• светолюбивые — растения открытых, хорошо освещаемых мест.
• тенелюбивые — нижние ярусы лесов (зеленый мох, лишайник).
• тепловыносливые — хорошо растут на свету, но и переносят затенение. Легко подстраиваются под световой режим.
Для животных световой режим не является таким необходимым экологическим фактором, но он необходим дляориентации в пространстве. Поэтому различные животные имеют различную конструкцию глаз. У беспозвоночных — самая примитивная, у других — очень сложная. У постоянных обитателей пещер может отсутствовать. Гремучие змеи видят ИК часть спектра, поэтому охотятся ночью.
3) Температура:
Один из важнейших абиотических факторов, прямо или косвенно влияющий на живые организмы.
Температура непосредственно влияет на жизнедеятельность растений и животных, определяя их активность и характер существования в конкретных ситуациях. Особенно заметное влияние оказывает t на фотосинтез, обмен веществ, потребление пищи, двигательную активность и размножение. Например, у картофеля максимальная продуктивность фотосинтеза при +20°С, а при t = 48°С полностью прекращается.
В зависимости от характера теплообмена с внешней средой организмы делятся:
• Организмы, t тела= t окр. среды, т.е. меняется в зависимости от t окр. среды, нет механизма терморегуляции (эффективного) (растения, рыбы, рептилии…). Растения понижают t за счет интенсивного испарения, при достаточном снабжении водой в пустыне — уменьшается t листьев на 15°С.
• Организмы с постоянной t тела (млекопитающие, птицы), более высокий уровень обмена веществ. Существует теплоизоляционный слой (мех, перья, жир), t =36-40°C.
• Организмы с постоянной t (еж, барсук, медведь), период активности — const t тела, зимняя спячка -значительно уменьшается (низкие потери энергии).
Также выделяют организмы, способные переносить колебания t0 в широких пределах (лишайники, млекопитающие, северные птицы) и организмы, существующие только при определенных t0 (глубоководные организмы, водоросли полярных льдов).
4) Влажность атмосферного воздуха.
Наиболее богаты влагой нижние слои атмосферы (до высоты 2 км), где концентрируется до 50 всей влаги, количество водяного пара, содержащегося в воздухе, зависит от t воздуха.
5) Атмосферные осадки.
Это дождь, снег, град и т.д. Осадки определяют перемещение и распространение вредных веществ в окружающей среде. В общем кругообороте воды наиболее подвижны именно атмосферные осадки, т.к. объем влаги в атмосфере меняется 40 раз за год. Основными условиями возникновения осадков являются: t воздуха, движение воздуха, рельеф.
Существуют следующие зоны в распределении осадков по земной поверхности:
• Влажная экваториальная.
Осадков более 2000 мм/год, например, бассейны рек Амазонка, Конго. Максимальное количество осадков — 11684 мм/год — о. Кауан (Гавайские о-ва), 350 дней в году дождь. Здесь располагаются влажные экваториальные леса — самый богатый тип растительности (более 50 тысяч видов).
• Сухая зона тропического пояса.
Осадков менее 200 мм/год. Пустыня Сахара и т.д. Минимальное количество осадков — 0,8 мм/год -пустыня Атакама (Чили, Южная Америка).
• Влажная зона умеренных широт. Осадков более 500 мм/год. Лесная зона Европы и Северная Америка, Сибирь.
• Полярная область.
Незначительное количество осадков до 250 мм/год (низкая t воздуха, низкое испарение). Арктические пустыни с бедной растительностью.
6) Газовый состав атмосферы.
Состав ее практически постоянен и включает: N -78%, 0 -20,9%, СО , аргон и другие газы, частицы воды, пыль.
7) Движение воздушных масс (ветер).
Максимальная скорость ветра примерно 400 км/час -ураган (штат Нью-Гемпшир, США).
Ветровой напор — направление ветра в сторону меньшего давления. Ветер переносит примеси в атмосфере.
8) Давление атмосферы.
760 мм ртутного столба или 10 кПа.
Абиотические факторы почвенного покрова.
Почва — это поверхностный слой земной коры, который образуется и развивается в результате взаимодействия растений, животных, микроорганизмов, горных пород и является самостоятельной экосистемой.
Важнейшим свойством почвы является плодородие, т.е. способность обеспечивать рост и развитие растений. Это свойство представляет исключительную ценность для жизни человека и других организмов. Почва является составной частью биосферы и энергии в природе, поддерживает газовый состав атмосферы.
Состав почвы: твердые частицы, жидкость (вода), газы (воздух- О , СО ), растения, животные, микроорганизмы, гумус.
Толщина почвы; 0,5м — тундра, горы; 1,5м — на равнинах.
1 см почвы образуется примерно за 100 лет.
Типы почв:
1. Арктические и тундровые (гумус до 1 -3 %)
2. Подзолистые (хвойные леса, гумус до 4-5 %).
3. Черноземы (степь, гумус до 10 %).
4. Каштановые (в сухих степях, гумус до 4%).
5. Серо-бурые (пустыни субтропические пояса, гумус 1-1,5%).
6. Красноземы (влажный субтропический лес, гумус до 6 %).
Гумус — органическое вещество почвы, образующееся в результате биохимического разложения растительных и животных остатков, которое накапливается в верхнем слое почвы. Главный источник питания растений. В гумусе также накапливаются микроэлементы. В процессе эксплуатации почв количество гумуса уменьшается, поэтому необходимо вносить различные удобрения.
Физические свойства:
1. Механический состав — содержание частиц различного диаметра.
2. Плотность.
3. Теплоемкость, теплопроводность.
4. Влагоемкость, влагопроницаемость (у песка выше влагопроницаемость, у глины — влагопроницаемость).
5. Аэрация — способность насыщения почвы воздухом (рыхление почвы).
Химические свойства:
1. Химический состав:
• до 50 % SiO — кремнезем
• до 25 % Al O — глинозем
• до 10 %- оксиды Fe
• остальное — оксиды Са, К, Mg, Р и т.д.
2. Кислотность
3. Содержание вредных веществ (пестициды, тяжелые металлы и т.д.)
Влияние кислотности на растения:
• Обитают на кислых почвах (рН < 6,7) карликовая береза, хвощ, некоторые мхи
• Нейтральные (рН 6,7 — 7,0) большинство культурных растений
• На щелочных почвах (рН > 7,0) степные и пустынные растения (лебеда, полынь…)
• Могут расти на любой почве (ландыш, вьюн, земляника лесная)
Абиотические факторы водной среды.
Водная оболочка Земли называется гидросферой, и включает океаны, моря, реки, озера, болота, ледники и т. д. Вода занимает преобладающую часть биосферы Земли (71 % земной поверхности). Средняя глубина — 3554м, вес 0,022 % веса планеты, площадь — 1350 млн. кв. км -океаны, 35 млн. кв. км — пресные воды.
Абиотические факторы водной среды — это физические и химические свойства воды как среды обитания живых организмов.
Физические свойства:
1. Плотность.
Плотность как экологический фактор определяет условия передвижения организмов, причем некоторые из них (головоногие моллюски, ракообразные и т.д.), обитающие на больших глубинах, могут переносить давление до 400 — 500 атмосфер. Плотность воды также обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм (планктон).
2. Температура.
Изменение t° в зависимости от глубины и колебания (суточные и сезонные).
Температурный режим водоемов более устойчив, чем на суше, что связано с высокой теплоемкостью воды. Например, колебания t° верхних слоев океана -10-15°С, более глубокие слой 3 -4°С.
3. Световой режим.
Играет важную роль в распределении водных организмов. Водоросли в океане обитают в освещаемой зоне, чаще всего на глубине до 40 м, если прозрачность воды велика, то и до 200 м. У Багамских островов обнаружены водоросли на глубине 265 м, а туда доходит всего 5*10-6 солнечной радиации.
С глубиной меняется и окраска животных. Наиболее ярко и разнообразно окрашены обитатели мелководной части океана. В глубоководной зоне распространена красная окраска, здесь она воспринимается, как черный цвет, что позволяет животным скрываться от врагов. В наиболее глубоководных районах Мирового океана в качестве источника света организмы используют свет, испускаемый живыми существами (биолюминесценция).
4. Подвижность — постоянное перемещение водных масс в пространстве.
5. Прозрачность.
Зависит от содержания взвешенных частиц. Самое чистое — море Уэддела в Антарктиде, видимость 80м (прозрачность дистиллированной воды).
Химические свойства:
1.Соленость воды — содержание растворенных сульфатов, хлоридов, карбонатов. В океане 35 г/л солей. Черное море — 19 г/л.
Пресноводные виды не могут обитать в морях, а морские — в реках. Однако, такие рыбы, как лосось, сельдь всю жизнь проводят в море, а для нереста поднимаются в реки.
2. Количество растворенного О и СО . О — для дыхания.
3. Кислая, нейтральная, щелочная среда.
Все обитатели приспособились к определенным кислотно-щелочным условиям. Их изменение в результате загрязнения может привести к гибели организмов.
Биотические факторы.
Биотические факторы — это совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую природу.
Классификация биотических взаимодействий:
1. Нейтрализм — ни одна популяция не влияет на другую.
2. Конкуренция — это использование ресурсов (пищи, воды, света, пространства) одним организмом, который тем самым уменьшает доступность этого ресурса ддя другого организма.
Конкуренция бывает внутривидовая и межвидовая. Если численность популяции невелика, то внутривидовая конкуренция выражена слабо и ресурсы имеются в изобилии. При высокой плотности популяции интенсивная внутривидовая конкуренция снижает наличие ресурсов до уровня, сдерживающего дальнейший рост, тем самым регулируется численность популяции.
Межвидовая конкуренция — взаимодействие между популяциями, которое неблагоприятно сказывается на их росте и выживаемости. При завозе в Британию из Северной Америки каролинской белки уменьшилась численность обыкновенной белки, т.к. каролинская белка оказалась более конкурентоспособной.
Конкуренция бывает прямая и косвенная.
Прямая — это внутривидовая конкуренция, связанная с борьбой за место обитания, в частности защита индивидуальных участков у птиц или животных, выражающейся в прямых столкновениях. При недостатке ресурсов возможно поедание животных особей своего вида (волки, рыси, хищные клопы, пауки, крысы, щука, окунь и т.д.)
Косвенная — между кустарниками и травянистыми растениями в Калифорнии. Тот вид, который обосновался первым, исключает другой тип. Быстро растущие травы с глубокими корнями снижали содержание влаги в почве до уровня непригодного для кустарников. А высокой кустарник затенял травы, не давая им произрастать из-за нехватки света.
3. Паразитизм — один организм (паразит) живёт за счёт питания тканями или соками другого организма (хозяина), тесно связан в своём жизненном цикле. Паразитов различают по месту обитания:
• находятся на поверхности хозяина. Блохи, вши, клещи — животные. Тля, мучнистая роса — растения. У паразита имеются специальные приспособления (крючки, присоски и т.п.)
• внутри хозяина. Вирусы, бактерии, примитивные грибы — растения. Глисты — животные. Высокая плодовитость. Не приводят к гибели хозяина, но угнетают процессы жизнедеятельности
4. Хищничество — поедание одного организма (жертвы) другим организмом (хищником).
Хищники могут поедать травоядных животных, и также слабых хищников. Хищники обладают широким спектром питания, легко переключаются с одной добычи на другую более доступную.
Хищники часто нападают на слабые жертвы. Норка уничтожает больных и старых ондатр, а на взрослых особей не нападает.
Поддерживается экологическое равновесие между популяциями жертва-хищник.
5. Симбиоз — сожительство двух организмов разных видов при котором организмы приносят друг другу пользу. По степени партнерства симбиоз бывает:
Комменсализм — один организм питается за счет другого, не нанося ему вреда. Рак — актиния. Актиния прикрепляется к раковине, защищая его от врагов, и питается остатками пищи.
Мутуализм — оба организма получают пользу, при этом они не могут существовать друг без друга. Лишайник — гриб + водоросль. Гриб защищает водоросль, а водоросль кормит его.
В естественных условиях один вид не приведёт к уничтожению другого вида. Source: studyspace.ru
Источник